Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon1b Structured version   Visualization version   GIF version

Theorem oplecon1b 34488
Description: Contraposition law for strict ordering in orthoposets. (chsscon1 28360 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))

Proof of Theorem oplecon1b
StepHypRef Expression
1 opcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 34481 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
433adant3 1081 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
5 opcon3.l . . . 4 = (le‘𝐾)
61, 5, 2oplecon3b 34487 . . 3 ((𝐾 ∈ OP ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
74, 6syld3an2 1373 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
81, 2opococ 34482 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
983adant3 1081 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
109breq2d 4665 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( ‘( 𝑋)) ↔ ( 𝑌) 𝑋))
117, 10bitrd 268 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  occoc 15949  OPcops 34459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-oposet 34463
This theorem is referenced by:  opoc1  34489  oldmm1  34504
  Copyright terms: Public domain W3C validator