![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet unit. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc1 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | opoc1.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
3 | 1, 2 | op0cl 34471 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
4 | opoc1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 4 | opoccl 34481 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
6 | 3, 5 | mpdan 702 | . . . 4 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
7 | eqid 2622 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | opoc1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
9 | 1, 7, 8 | ople1 34478 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
10 | 6, 9 | mpdan 702 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
11 | 1, 8 | op1cl 34472 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
12 | 1, 7, 4 | oplecon1b 34488 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
13 | 11, 3, 12 | mpd3an23 1426 | . . 3 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
14 | 10, 13 | mpbird 247 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 )(le‘𝐾) 0 ) |
15 | 1, 4 | opoccl 34481 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
16 | 11, 15 | mpdan 702 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
17 | 1, 7, 2 | ople0 34474 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
18 | 16, 17 | mpdan 702 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
19 | 14, 18 | mpbid 222 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 lecple 15948 occoc 15949 0.cp0 17037 1.cp1 17038 OPcops 34459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-p0 17039 df-p1 17040 df-oposet 34463 |
This theorem is referenced by: opoc0 34490 olm11 34514 1cvrco 34758 1cvrjat 34761 pol1N 35196 doch1 36648 |
Copyright terms: Public domain | W3C validator |