| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.57 | Structured version Visualization version GIF version | ||
| Description: Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm11.57 | ⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfal 2153 | . . . 4 ⊢ Ⅎ𝑦∀𝑥𝜑 |
| 3 | sp 2053 | . . . . 5 ⊢ (∀𝑥𝜑 → 𝜑) | |
| 4 | stdpc4 2353 | . . . . 5 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 5 | 3, 4 | jca 554 | . . . 4 ⊢ (∀𝑥𝜑 → (𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| 6 | 2, 5 | alrimi 2082 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| 7 | 6 | axc4i 2131 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| 8 | simpl 473 | . . . 4 ⊢ ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) | |
| 9 | 8 | sps 2055 | . . 3 ⊢ (∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝜑) |
| 10 | 9 | alimi 1739 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) → ∀𝑥𝜑) |
| 11 | 7, 10 | impbii 199 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∀wal 1481 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |