Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.58 Structured version   Visualization version   GIF version

Theorem pm11.58 38590
Description: Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.58 (∃𝑥𝜑 ↔ ∃𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pm11.58
StepHypRef Expression
1 19.8a 2052 . . . . 5 (𝜑 → ∃𝑥𝜑)
2 nfv 1843 . . . . . 6 𝑦𝜑
32sb8e 2425 . . . . 5 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
41, 3sylib 208 . . . 4 (𝜑 → ∃𝑦[𝑦 / 𝑥]𝜑)
54pm4.71i 664 . . 3 (𝜑 ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑))
6 19.42v 1918 . . 3 (∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑 ∧ ∃𝑦[𝑦 / 𝑥]𝜑))
75, 6bitr4i 267 . 2 (𝜑 ↔ ∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
87exbii 1774 1 (∃𝑥𝜑 ↔ ∃𝑥𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wex 1704  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator