| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm14.122a | Structured version Visualization version GIF version | ||
| Description: Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm14.122a | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1816 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 2 | sbc6g 3461 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | |
| 3 | 2 | bicomd 213 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ [𝐴 / 𝑥]𝜑)) |
| 4 | 3 | anbi2d 740 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) |
| 5 | 1, 4 | syl5bb 272 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝑥 = 𝐴) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: pm14.122c 38625 |
| Copyright terms: Public domain | W3C validator |