Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm14.122b Structured version   Visualization version   GIF version

Theorem pm14.122b 38624
Description: Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
Assertion
Ref Expression
pm14.122b (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem pm14.122b
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2633 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
21imbi2d 330 . . . . 5 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
32albidv 1849 . . . 4 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
4 dfsbcq 3437 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
54bibi1d 333 . . . 4 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑)))
63, 5imbi12d 334 . . 3 (𝑦 = 𝐴 → ((∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑)) ↔ (∀𝑥(𝜑𝑥 = 𝐴) → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑))))
7 sbc5 3460 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
8 nfa1 2028 . . . . 5 𝑥𝑥(𝜑𝑥 = 𝑦)
9 simpr 477 . . . . . 6 ((𝑥 = 𝑦𝜑) → 𝜑)
10 ancr 572 . . . . . . 7 ((𝜑𝑥 = 𝑦) → (𝜑 → (𝑥 = 𝑦𝜑)))
1110sps 2055 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑 → (𝑥 = 𝑦𝜑)))
129, 11impbid2 216 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → ((𝑥 = 𝑦𝜑) ↔ 𝜑))
138, 12exbid 2091 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥𝜑))
147, 13syl5bb 272 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑))
156, 14vtoclg 3266 . 2 (𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑)))
1615pm5.32d 671 1 (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  pm14.122c  38625
  Copyright terms: Public domain W3C validator