| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.64 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.64 | ⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or 385 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | bicomi 214 | 1 ⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: pm4.66 436 ioran 511 dfifp3 1015 dfnf5 3952 fimaxg 8207 fiming 8404 kmlem8 8979 axgroth6 9650 dfconn2 21222 ifpimimb 37849 ifpor123g 37853 hirstL-ax3 41059 |
| Copyright terms: Public domain | W3C validator |