Proof of Theorem kmlem8
| Step | Hyp | Ref
| Expression |
| 1 | | ralnex 2992 |
. . . . 5
⊢
(∀𝑧 ∈
𝑢 ¬ ∀𝑤 ∈ 𝑧 𝜓 ↔ ¬ ∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓) |
| 2 | | df-rex 2918 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝑧 ¬ 𝜓 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ¬ 𝜓)) |
| 3 | | rexnal 2995 |
. . . . . . . 8
⊢
(∃𝑤 ∈
𝑧 ¬ 𝜓 ↔ ¬ ∀𝑤 ∈ 𝑧 𝜓) |
| 4 | 2, 3 | bitr3i 266 |
. . . . . . 7
⊢
(∃𝑤(𝑤 ∈ 𝑧 ∧ ¬ 𝜓) ↔ ¬ ∀𝑤 ∈ 𝑧 𝜓) |
| 5 | | exsimpl 1795 |
. . . . . . . 8
⊢
(∃𝑤(𝑤 ∈ 𝑧 ∧ ¬ 𝜓) → ∃𝑤 𝑤 ∈ 𝑧) |
| 6 | | n0 3931 |
. . . . . . . 8
⊢ (𝑧 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝑧) |
| 7 | 5, 6 | sylibr 224 |
. . . . . . 7
⊢
(∃𝑤(𝑤 ∈ 𝑧 ∧ ¬ 𝜓) → 𝑧 ≠ ∅) |
| 8 | 4, 7 | sylbir 225 |
. . . . . 6
⊢ (¬
∀𝑤 ∈ 𝑧 𝜓 → 𝑧 ≠ ∅) |
| 9 | 8 | ralimi 2952 |
. . . . 5
⊢
(∀𝑧 ∈
𝑢 ¬ ∀𝑤 ∈ 𝑧 𝜓 → ∀𝑧 ∈ 𝑢 𝑧 ≠ ∅) |
| 10 | 1, 9 | sylbir 225 |
. . . 4
⊢ (¬
∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∀𝑧 ∈ 𝑢 𝑧 ≠ ∅) |
| 11 | | biimt 350 |
. . . . . . . . 9
⊢ (𝑧 ≠ ∅ →
(∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 12 | 11 | ralimi 2952 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑢 𝑧 ≠ ∅ → ∀𝑧 ∈ 𝑢 (∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 13 | | ralbi 3068 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑢 (∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) → (∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑢 𝑧 ≠ ∅ → (∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 15 | 14 | anbi2d 740 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑢 𝑧 ≠ ∅ → ((¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ (¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))))) |
| 16 | 15 | exbidv 1850 |
. . . . 5
⊢
(∀𝑧 ∈
𝑢 𝑧 ≠ ∅ → (∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))))) |
| 17 | | kmlem2 8973 |
. . . . 5
⊢
(∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 18 | 16, 17 | syl6rbbr 279 |
. . . 4
⊢
(∀𝑧 ∈
𝑢 𝑧 ≠ ∅ → (∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 19 | 10, 18 | syl 17 |
. . 3
⊢ (¬
∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → (∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 20 | 19 | pm5.74i 260 |
. 2
⊢ ((¬
∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (¬ ∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 21 | | pm4.64 387 |
. 2
⊢ ((¬
∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 ∨ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |
| 22 | 20, 21 | bitri 264 |
1
⊢ ((¬
∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 ∨ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) |