| Step | Hyp | Ref
| Expression |
| 1 | | simplrr 801 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → 𝑤 ∈ 𝐵) |
| 2 | | simprlr 803 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) |
| 3 | | simprrl 804 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤) |
| 4 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑤)) |
| 5 | 4 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤)) |
| 6 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑤)) |
| 7 | 5, 6 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 → 𝑥 ≤ 𝑤))) |
| 8 | 7 | rspcv 3305 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 → 𝑥 ≤ 𝑤))) |
| 9 | 1, 2, 3, 8 | syl3c 66 |
. . . . 5
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → 𝑥 ≤ 𝑤) |
| 10 | | simplrl 800 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → 𝑥 ∈ 𝐵) |
| 11 | | simprrr 805 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)) |
| 12 | | simprll 802 |
. . . . . 6
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
| 13 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥)) |
| 14 | 13 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
| 15 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑤 ≤ 𝑧 ↔ 𝑤 ≤ 𝑥)) |
| 16 | 14, 15 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 → 𝑤 ≤ 𝑥))) |
| 17 | 16 | rspcv 3305 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 → 𝑤 ≤ 𝑥))) |
| 18 | 10, 11, 12, 17 | syl3c 66 |
. . . . 5
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → 𝑤 ≤ 𝑥) |
| 19 | | poslubmo.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
| 20 | | poslubmo.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
| 21 | 19, 20 | posasymb 16952 |
. . . . . . 7
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) ↔ 𝑥 = 𝑤)) |
| 22 | 21 | 3expb 1266 |
. . . . . 6
⊢ ((𝐾 ∈ Poset ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) ↔ 𝑥 = 𝑤)) |
| 23 | 22 | ad4ant13 1292 |
. . . . 5
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) ↔ 𝑥 = 𝑤)) |
| 24 | 9, 18, 23 | mpbi2and 956 |
. . . 4
⊢ ((((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) → 𝑥 = 𝑤) |
| 25 | 24 | ex 450 |
. . 3
⊢ (((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧))) → 𝑥 = 𝑤)) |
| 26 | 25 | ralrimivva 2971 |
. 2
⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧))) → 𝑥 = 𝑤)) |
| 27 | | breq2 4657 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑤)) |
| 28 | 27 | ralbidv 2986 |
. . . 4
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤)) |
| 29 | | breq1 4656 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑧 ↔ 𝑤 ≤ 𝑧)) |
| 30 | 29 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧))) |
| 31 | 30 | ralbidv 2986 |
. . . 4
⊢ (𝑥 = 𝑤 → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧))) |
| 32 | 28, 31 | anbi12d 747 |
. . 3
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧)))) |
| 33 | 32 | rmo4 3399 |
. 2
⊢
(∃*𝑥 ∈
𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ∧ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑤 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑤 ≤ 𝑧))) → 𝑥 = 𝑤)) |
| 34 | 26, 33 | sylibr 224 |
1
⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |