![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant13 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
ad4ant13.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant13 | ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant13.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 450 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | a1dd 50 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜒))) |
4 | 3 | a1d 25 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → (𝜏 → 𝜒)))) |
5 | 4 | imp41 619 | 1 ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: fntpb 6473 dvdslcmf 15344 poslubmo 17146 posglbmo 17147 trust 22033 metust 22363 umgrres1lem 26202 upgrres1 26205 friendshipgt3 27256 repr0 30689 breprexplemc 30710 hgt750lemb 30734 matunitlindflem1 33405 mapss2 39397 supxrge 39554 xrlexaddrp 39568 infxr 39583 infleinf 39588 unb2ltle 39642 supminfxr 39694 limsuppnfdlem 39933 limsupub 39936 limsuppnflem 39942 climinf3 39948 limsupmnflem 39952 climxrre 39982 liminfvalxr 40015 sge0isum 40644 sge0gtfsumgt 40660 sge0seq 40663 nnfoctbdjlem 40672 omeiunltfirp 40733 hspdifhsp 40830 hspmbllem2 40841 pimdecfgtioo 40927 pimincfltioo 40928 preimageiingt 40930 preimaleiinlt 40931 smfid 40961 proththd 41531 |
Copyright terms: Public domain | W3C validator |