| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prcssprc | Structured version Visualization version GIF version | ||
| Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| prcssprc | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 4804 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 2 | 1 | ex 450 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
| 3 | 2 | nelcon3d 2909 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∉ V → 𝐵 ∉ V)) |
| 4 | 3 | imp 445 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∉ wnel 2897 Vcvv 3200 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-v 3202 df-in 3581 df-ss 3588 |
| This theorem is referenced by: usgrprc 26158 rgrusgrprc 26485 rgrprc 26487 |
| Copyright terms: Public domain | W3C validator |