MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcssprc Structured version   Visualization version   GIF version

Theorem prcssprc 4806
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.)
Assertion
Ref Expression
prcssprc ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)

Proof of Theorem prcssprc
StepHypRef Expression
1 ssexg 4804 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
21ex 450 . . 3 (𝐴𝐵 → (𝐵 ∈ V → 𝐴 ∈ V))
32nelcon3d 2909 . 2 (𝐴𝐵 → (𝐴 ∉ V → 𝐵 ∉ V))
43imp 445 1 ((𝐴𝐵𝐴 ∉ V) → 𝐵 ∉ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wnel 2897  Vcvv 3200  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-v 3202  df-in 3581  df-ss 3588
This theorem is referenced by:  usgrprc  26158  rgrusgrprc  26485  rgrprc  26487
  Copyright terms: Public domain W3C validator