![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sselpwd | Structured version Visualization version GIF version |
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
Ref | Expression |
---|---|
sselpwd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sselpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sselpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sselpwd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | 2, 1 | ssexd 4805 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | elpwg 4166 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
6 | 1, 5 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
This theorem is referenced by: knatar 6607 fin1a2lem7 9228 wunss 9534 mreexd 16302 mreexexlemd 16304 ustssel 22009 crefi 29914 ldsysgenld 30223 ldgenpisyslem1 30226 rfovcnvf1od 38298 fsovrfovd 38303 fsovfd 38306 fsovcnvlem 38307 ntrclsrcomplex 38333 clsk3nimkb 38338 clsk1indlem3 38341 clsk1indlem4 38342 clsk1indlem1 38343 ntrclsiso 38365 ntrclskb 38367 ntrclsk3 38368 ntrclsk13 38369 ntrneircomplex 38372 ntrneik3 38394 ntrneix3 38395 ntrneik13 38396 ntrneix13 38397 clsneircomplex 38401 clsneiel1 38406 neicvgrcomplex 38411 neicvgel1 38417 ovolsplit 40205 |
Copyright terms: Public domain | W3C validator |