MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predep Structured version   Visualization version   GIF version

Theorem predep 5706
Description: The predecessor under the epsilon relationship is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
predep (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))

Proof of Theorem predep
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-pred 5680 . 2 Pred( E , 𝐴, 𝑋) = (𝐴 ∩ ( E “ {𝑋}))
2 relcnv 5503 . . . . 5 Rel E
3 relimasn 5488 . . . . 5 (Rel E → ( E “ {𝑋}) = {𝑦𝑋 E 𝑦})
42, 3ax-mp 5 . . . 4 ( E “ {𝑋}) = {𝑦𝑋 E 𝑦}
5 vex 3203 . . . . . . 7 𝑦 ∈ V
6 brcnvg 5303 . . . . . . 7 ((𝑋𝐵𝑦 ∈ V) → (𝑋 E 𝑦𝑦 E 𝑋))
75, 6mpan2 707 . . . . . 6 (𝑋𝐵 → (𝑋 E 𝑦𝑦 E 𝑋))
8 epelg 5030 . . . . . 6 (𝑋𝐵 → (𝑦 E 𝑋𝑦𝑋))
97, 8bitrd 268 . . . . 5 (𝑋𝐵 → (𝑋 E 𝑦𝑦𝑋))
109abbi1dv 2743 . . . 4 (𝑋𝐵 → {𝑦𝑋 E 𝑦} = 𝑋)
114, 10syl5eq 2668 . . 3 (𝑋𝐵 → ( E “ {𝑋}) = 𝑋)
1211ineq2d 3814 . 2 (𝑋𝐵 → (𝐴 ∩ ( E “ {𝑋})) = (𝐴𝑋))
131, 12syl5eq 2668 1 (𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  cin 3573  {csn 4177   class class class wbr 4653   E cep 5028  ccnv 5113  cima 5117  Rel wrel 5119  Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by:  predon  6991  omsinds  7084
  Copyright terms: Public domain W3C validator