![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predpredss | Structured version Visualization version GIF version |
Description: If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predpredss | ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 3838 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ⊆ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 5680 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 5680 | . 2 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
4 | 1, 2, 3 | 3sstr4g 3646 | 1 ⊢ (𝐴 ⊆ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3573 ⊆ wss 3574 {csn 4177 ◡ccnv 5113 “ cima 5117 Predcpred 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pred 5680 |
This theorem is referenced by: preddowncl 5707 wfrlem8 7422 |
Copyright terms: Public domain | W3C validator |