MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predss Structured version   Visualization version   GIF version

Theorem predss 5687
Description: The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predss Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴

Proof of Theorem predss
StepHypRef Expression
1 df-pred 5680 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inss1 3833 . 2 (𝐴 ∩ (𝑅 “ {𝑋})) ⊆ 𝐴
31, 2eqsstri 3635 1 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3573  wss 3574  {csn 4177  ccnv 5113  cima 5117  Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pred 5680
This theorem is referenced by:  wfr3g  7413  wfrlem4  7418  wfrlem10  7424  trpredlem1  31727  wsuclem  31773  wsuclemOLD  31774  frr3g  31779  frrlem4  31783
  Copyright terms: Public domain W3C validator