MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqsnd Structured version   Visualization version   GIF version

Theorem preqsnd 4392
Description: Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Hypotheses
Ref Expression
preqsnd.1 (𝜑𝐴 ∈ V)
preqsnd.2 (𝜑𝐵 ∈ V)
preqsnd.3 (𝜑𝐶 ∈ V)
Assertion
Ref Expression
preqsnd (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))

Proof of Theorem preqsnd
StepHypRef Expression
1 preqsnd.1 . 2 (𝜑𝐴 ∈ V)
2 preqsnd.2 . 2 (𝜑𝐵 ∈ V)
3 preqsnd.3 . 2 (𝜑𝐶 ∈ V)
4 dfsn2 4190 . . . 4 {𝐶} = {𝐶, 𝐶}
54eqeq2i 2634 . . 3 ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶})
6 preq12bg 4386 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐶))))
7 oridm 536 . . . 4 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐶)) ↔ (𝐴 = 𝐶𝐵 = 𝐶))
86, 7syl6bb 276 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
95, 8syl5bb 272 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐶 ∈ V)) → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
101, 2, 3, 3, 9syl22anc 1327 1 (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶𝐵 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  1loopgrnb0  26398  disjdifprg  29388
  Copyright terms: Public domain W3C validator