![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1loopgrnb0 | Structured version Visualization version GIF version |
Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020.) (Revised by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
1loopgruspgr.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
1loopgruspgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1loopgruspgr.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
1loopgruspgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
Ref | Expression |
---|---|
1loopgrnb0 | ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgruspgr.v | . . . . 5 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
2 | 1loopgruspgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
3 | 1loopgruspgr.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
4 | 1loopgruspgr.i | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) | |
5 | 1, 2, 3, 4 | 1loopgruspgr 26396 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ USPGraph ) |
6 | uspgrupgr 26071 | . . . 4 ⊢ (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ UPGraph ) |
8 | 1 | eleq2d 2687 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ (Vtx‘𝐺) ↔ 𝑁 ∈ 𝑉)) |
9 | 3, 8 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (Vtx‘𝐺)) |
10 | eqid 2622 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
11 | eqid 2622 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
12 | 10, 11 | nbupgr 26240 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
13 | 7, 9, 12 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)}) |
14 | 1 | difeq1d 3727 | . . . . . . . 8 ⊢ (𝜑 → ((Vtx‘𝐺) ∖ {𝑁}) = (𝑉 ∖ {𝑁})) |
15 | 14 | eleq2d 2687 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ↔ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
16 | eldifsn 4317 | . . . . . . . 8 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁)) | |
17 | 3 | elexd 3214 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑁 ∈ V) |
18 | 17 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑁 ∈ V) |
19 | elex 3212 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ 𝑉 → 𝑣 ∈ V) | |
20 | 19 | adantl 482 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ V) |
21 | 18, 20, 18 | preqsnd 4392 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} ↔ (𝑁 = 𝑁 ∧ 𝑣 = 𝑁))) |
22 | simpr 477 | . . . . . . . . . . 11 ⊢ ((𝑁 = 𝑁 ∧ 𝑣 = 𝑁) → 𝑣 = 𝑁) | |
23 | 21, 22 | syl6bi 243 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ({𝑁, 𝑣} = {𝑁} → 𝑣 = 𝑁)) |
24 | 23 | necon3ad 2807 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ≠ 𝑁 → ¬ {𝑁, 𝑣} = {𝑁})) |
25 | 24 | expimpd 629 | . . . . . . . 8 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁) → ¬ {𝑁, 𝑣} = {𝑁})) |
26 | 16, 25 | syl5bi 232 | . . . . . . 7 ⊢ (𝜑 → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
27 | 15, 26 | sylbid 230 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) → ¬ {𝑁, 𝑣} = {𝑁})) |
28 | 27 | imp 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} = {𝑁}) |
29 | 1, 2, 3, 4 | 1loopgredg 26397 | . . . . . . . . 9 ⊢ (𝜑 → (Edg‘𝐺) = {{𝑁}}) |
30 | 29 | eleq2d 2687 | . . . . . . . 8 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} ∈ {{𝑁}})) |
31 | prex 4909 | . . . . . . . . 9 ⊢ {𝑁, 𝑣} ∈ V | |
32 | 31 | elsn 4192 | . . . . . . . 8 ⊢ ({𝑁, 𝑣} ∈ {{𝑁}} ↔ {𝑁, 𝑣} = {𝑁}) |
33 | 30, 32 | syl6bb 276 | . . . . . . 7 ⊢ (𝜑 → ({𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ {𝑁, 𝑣} = {𝑁})) |
34 | 33 | notbid 308 | . . . . . 6 ⊢ (𝜑 → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
35 | 34 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → (¬ {𝑁, 𝑣} ∈ (Edg‘𝐺) ↔ ¬ {𝑁, 𝑣} = {𝑁})) |
36 | 28, 35 | mpbird 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁})) → ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
37 | 36 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) |
38 | rabeq0 3957 | . . 3 ⊢ ({𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅ ↔ ∀𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ¬ {𝑁, 𝑣} ∈ (Edg‘𝐺)) | |
39 | 37, 38 | sylibr 224 | . 2 ⊢ (𝜑 → {𝑣 ∈ ((Vtx‘𝐺) ∖ {𝑁}) ∣ {𝑁, 𝑣} ∈ (Edg‘𝐺)} = ∅) |
40 | 13, 39 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 {crab 2916 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 {csn 4177 {cpr 4179 〈cop 4183 ‘cfv 5888 (class class class)co 6650 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 UPGraph cupgr 25975 USPGraph cuspgr 26043 NeighbVtx cnbgr 26224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 df-edg 25940 df-upgr 25977 df-uspgr 26045 df-nbgr 26228 |
This theorem is referenced by: uspgrloopnb0 26415 |
Copyright terms: Public domain | W3C validator |