| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version | ||
| Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4267 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | prprc1 4300 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
| 3 | 1, 2 | syl5eq 2668 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: tpprceq3 4335 elpreqprlem 4395 prex 4909 indislem 20804 1to2vfriswmgr 27143 indispconn 31216 elsprel 41725 |
| Copyright terms: Public domain | W3C validator |