![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreqprlem | Structured version Visualization version GIF version |
Description: Lemma for elpreqpr 4396. (Contributed by Scott Fenton, 7-Dec-2020.) (Revised by AV, 9-Dec-2020.) |
Ref | Expression |
---|---|
elpreqprlem | ⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ {𝐵, 𝐶} = {𝐵, 𝐶} | |
2 | preq2 4269 | . . . . . 6 ⊢ (𝑥 = 𝐶 → {𝐵, 𝑥} = {𝐵, 𝐶}) | |
3 | 2 | eqeq2d 2632 | . . . . 5 ⊢ (𝑥 = 𝐶 → ({𝐵, 𝐶} = {𝐵, 𝑥} ↔ {𝐵, 𝐶} = {𝐵, 𝐶})) |
4 | 3 | spcegv 3294 | . . . 4 ⊢ (𝐶 ∈ V → ({𝐵, 𝐶} = {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})) |
5 | 1, 4 | mpi 20 | . . 3 ⊢ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) |
6 | 5 | a1d 25 | . 2 ⊢ (𝐶 ∈ V → (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})) |
7 | dfsn2 4190 | . . . 4 ⊢ {𝐵} = {𝐵, 𝐵} | |
8 | preq2 4269 | . . . . . 6 ⊢ (𝑥 = 𝐵 → {𝐵, 𝑥} = {𝐵, 𝐵}) | |
9 | 8 | eqeq2d 2632 | . . . . 5 ⊢ (𝑥 = 𝐵 → ({𝐵} = {𝐵, 𝑥} ↔ {𝐵} = {𝐵, 𝐵})) |
10 | 9 | spcegv 3294 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ({𝐵} = {𝐵, 𝐵} → ∃𝑥{𝐵} = {𝐵, 𝑥})) |
11 | 7, 10 | mpi 20 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵} = {𝐵, 𝑥}) |
12 | prprc2 4301 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → {𝐵, 𝐶} = {𝐵}) | |
13 | 12 | eqeq1d 2624 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ({𝐵, 𝐶} = {𝐵, 𝑥} ↔ {𝐵} = {𝐵, 𝑥})) |
14 | 13 | exbidv 1850 | . . 3 ⊢ (¬ 𝐶 ∈ V → (∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥} ↔ ∃𝑥{𝐵} = {𝐵, 𝑥})) |
15 | 11, 14 | syl5ibr 236 | . 2 ⊢ (¬ 𝐶 ∈ V → (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})) |
16 | 6, 15 | pm2.61i 176 | 1 ⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 {csn 4177 {cpr 4179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
This theorem is referenced by: elpreqpr 4396 |
Copyright terms: Public domain | W3C validator |