| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pssn2lp | Structured version Visualization version GIF version | ||
| Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| pssn2lp | ⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss3 3693 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simprbi 480 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊆ 𝐴) |
| 3 | pssss 3702 | . . 3 ⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) | |
| 4 | 2, 3 | nsyl 135 | . 2 ⊢ (𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊊ 𝐴) |
| 5 | imnan 438 | . 2 ⊢ ((𝐴 ⊊ 𝐵 → ¬ 𝐵 ⊊ 𝐴) ↔ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴)) | |
| 6 | 4, 5 | mpbi 220 | 1 ⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ⊆ wss 3574 ⊊ wpss 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-in 3581 df-ss 3588 df-pss 3590 |
| This theorem is referenced by: psstr 3711 cvnsym 29149 |
| Copyright terms: Public domain | W3C validator |