MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwne Structured version   Visualization version   GIF version

Theorem pwne 4831
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 4433. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne (𝐴𝑉 → 𝒫 𝐴𝐴)

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 4830 . 2 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
2 eqimss 3657 . . 3 (𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴)
32necon3bi 2820 . 2 (¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴)
41, 3syl 17 1 (𝐴𝑉 → 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 1990  wne 2794  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  pnfnemnf  10094
  Copyright terms: Public domain W3C validator