MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Visualization version   GIF version

Theorem pwsn 4428
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn 𝒫 {𝐴} = {∅, {𝐴}}

Proof of Theorem pwsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssn 4358 . . 3 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
21abbii 2739 . 2 {𝑥𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
3 df-pw 4160 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
4 dfpr2 4195 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
52, 3, 43eqtr4i 2654 1 𝒫 {𝐴} = {∅, {𝐴}}
Colors of variables: wff setvar class
Syntax hints:  wo 383   = wceq 1483  {cab 2608  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180
This theorem is referenced by:  pmtrsn  17939  topsn  20735  conncompid  21234  lfuhgr1v0e  26146  esumsnf  30126  cvmlift2lem9  31293  rrxtopn0b  40516  sge0sn  40596
  Copyright terms: Public domain W3C validator