MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssn Structured version   Visualization version   GIF version

Theorem sssn 4358
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
sssn (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))

Proof of Theorem sssn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 3930 . . . . . . 7 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3597 . . . . . . . . . . 11 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 ∈ {𝐵}))
3 elsni 4194 . . . . . . . . . . 11 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
42, 3syl6 35 . . . . . . . . . 10 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝑥 = 𝐵))
5 eleq1 2689 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
64, 5syl6 35 . . . . . . . . 9 (𝐴 ⊆ {𝐵} → (𝑥𝐴 → (𝑥𝐴𝐵𝐴)))
76ibd 258 . . . . . . . 8 (𝐴 ⊆ {𝐵} → (𝑥𝐴𝐵𝐴))
87exlimdv 1861 . . . . . . 7 (𝐴 ⊆ {𝐵} → (∃𝑥 𝑥𝐴𝐵𝐴))
91, 8syl5bi 232 . . . . . 6 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐵𝐴))
10 snssi 4339 . . . . . 6 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
119, 10syl6 35 . . . . 5 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → {𝐵} ⊆ 𝐴))
1211anc2li 580 . . . 4 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴)))
13 eqss 3618 . . . 4 (𝐴 = {𝐵} ↔ (𝐴 ⊆ {𝐵} ∧ {𝐵} ⊆ 𝐴))
1412, 13syl6ibr 242 . . 3 (𝐴 ⊆ {𝐵} → (¬ 𝐴 = ∅ → 𝐴 = {𝐵}))
1514orrd 393 . 2 (𝐴 ⊆ {𝐵} → (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
16 0ss 3972 . . . 4 ∅ ⊆ {𝐵}
17 sseq1 3626 . . . 4 (𝐴 = ∅ → (𝐴 ⊆ {𝐵} ↔ ∅ ⊆ {𝐵}))
1816, 17mpbiri 248 . . 3 (𝐴 = ∅ → 𝐴 ⊆ {𝐵})
19 eqimss 3657 . . 3 (𝐴 = {𝐵} → 𝐴 ⊆ {𝐵})
2018, 19jaoi 394 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → 𝐴 ⊆ {𝐵})
2115, 20impbii 199 1 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  wss 3574  c0 3915  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  eqsn  4361  eqsnOLD  4362  snsssn  4372  pwsn  4428  frsn  5189  foconst  6126  fin1a2lem12  9233  fpwwe2lem13  9464  gsumval2  17280  0top  20787  minveclem4a  23201  uvtxa01vtx0  26297  locfinref  29908  ordcmp  32446  bj-snmoore  33068  uneqsn  38321
  Copyright terms: Public domain W3C validator