Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwtrrVD Structured version   Visualization version   GIF version

Theorem pwtrrVD 39060
Description: Virtual deduction proof of pwtr 4921; see pwtrVD 39059 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
pwtrrVD.1 𝐴 ∈ V
Assertion
Ref Expression
pwtrrVD (Tr 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem pwtrrVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4754 . . 3 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
2 idn1 38790 . . . . . . . 8 (   Tr 𝒫 𝐴   ▶   Tr 𝒫 𝐴   )
3 idn2 38838 . . . . . . . . 9 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   (𝑧𝑦𝑦𝐴)   )
4 simpr 477 . . . . . . . . 9 ((𝑧𝑦𝑦𝐴) → 𝑦𝐴)
53, 4e2 38856 . . . . . . . 8 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦𝐴   )
6 pwtrrVD.1 . . . . . . . . 9 𝐴 ∈ V
76pwid 4174 . . . . . . . 8 𝐴 ∈ 𝒫 𝐴
8 trel 4759 . . . . . . . . 9 (Tr 𝒫 𝐴 → ((𝑦𝐴𝐴 ∈ 𝒫 𝐴) → 𝑦 ∈ 𝒫 𝐴))
98expd 452 . . . . . . . 8 (Tr 𝒫 𝐴 → (𝑦𝐴 → (𝐴 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴)))
102, 5, 7, 9e120 38888 . . . . . . 7 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦 ∈ 𝒫 𝐴   )
11 elpwi 4168 . . . . . . 7 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
1210, 11e2 38856 . . . . . 6 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦𝐴   )
13 simpl 473 . . . . . . 7 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
143, 13e2 38856 . . . . . 6 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑧𝑦   )
15 ssel 3597 . . . . . 6 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
1612, 14, 15e22 38896 . . . . 5 (   Tr 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑧𝐴   )
1716in2 38830 . . . 4 (   Tr 𝒫 𝐴   ▶   ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)   )
1817gen12 38843 . . 3 (   Tr 𝒫 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)   )
19 biimpr 210 . . 3 ((Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴) → Tr 𝐴))
201, 18, 19e01 38916 . 2 (   Tr 𝒫 𝐴   ▶   Tr 𝐴   )
2120in1 38787 1 (Tr 𝒫 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-tr 4753  df-vd1 38786  df-vd2 38794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator