| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwtr | Structured version Visualization version GIF version | ||
| Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 4918 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | sseq1i 3629 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| 3 | df-tr 4753 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
| 4 | dftr4 4757 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4ri 293 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 Tr wtr 4752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-tr 4753 |
| This theorem is referenced by: r1tr 8639 itunitc1 9242 |
| Copyright terms: Public domain | W3C validator |