| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.23 2080. See r19.23v 3023 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| r19.23.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| r19.23 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.23.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | r19.23t 3021 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1708 ∀wral 2912 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: rexlimi 3024 ss2iundf 37951 iunssf 39263 |
| Copyright terms: Public domain | W3C validator |