| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.26-3 | Structured version Visualization version GIF version | ||
| Description: Version of r19.26 3064 with three quantifiers. (Contributed by FL, 22-Nov-2010.) |
| Ref | Expression |
|---|---|
| r19.26-3 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1039 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 1 | ralbii 2980 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 3 | r19.26 3064 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 4 | r19.26 3064 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 4 | anbi1i 731 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 6 | df-3an 1039 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒)) | |
| 7 | 5, 6 | bitr4i 267 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∀𝑥 ∈ 𝐴 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| 8 | 2, 3, 7 | 3bitri 286 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ral 2917 |
| This theorem is referenced by: sgrp2rid2ex 17414 axeuclid 25843 axcontlem8 25851 stoweidlem60 40277 |
| Copyright terms: Public domain | W3C validator |