Proof of Theorem axcontlem8
| Step | Hyp | Ref
| Expression |
| 1 | | axcontlem8.1 |
. . . . . . . . 9
⊢ 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} |
| 2 | | axcontlem8.2 |
. . . . . . . . 9
⊢ 𝐹 = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐷 ∧ (𝑡 ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑡) · (𝑍‘𝑖)) + (𝑡 · (𝑈‘𝑖)))))} |
| 3 | 1, 2 | axcontlem6 25849 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑃 ∈ 𝐷) → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 4 | 3 | ex 450 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → (𝑃 ∈ 𝐷 → ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))))) |
| 5 | 1, 2 | axcontlem6 25849 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑄 ∈ 𝐷) → ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))))) |
| 6 | 5 | ex 450 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → (𝑄 ∈ 𝐷 → ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))))) |
| 7 | 1, 2 | axcontlem6 25849 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ 𝑅 ∈ 𝐷) → ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 8 | 7 | ex 450 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → (𝑅 ∈ 𝐷 → ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 9 | 4, 6, 8 | 3anim123d 1406 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → ((𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷) → (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 10 | 9 | imp 445 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 11 | 10 | adantr 481 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 12 | | 3an6 1409 |
. . . . 5
⊢ ((((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) ↔ (((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞)) ∧
(∀𝑖 ∈
(1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 13 | | 0elunit 12290 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,]1) |
| 14 | | simplr1 1103 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → (𝐹‘𝑃) ∈ (0[,)+∞)) |
| 15 | 14 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ∈ (0[,)+∞)) |
| 16 | | elrege0 12278 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑃) ∈ (0[,)+∞) ↔ ((𝐹‘𝑃) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑃))) |
| 17 | 16 | simplbi 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑃) ∈ (0[,)+∞) → (𝐹‘𝑃) ∈ ℝ) |
| 18 | 15, 17 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ∈ ℝ) |
| 19 | 18 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ∈ ℂ) |
| 20 | | simprrl 804 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ≤ (𝐹‘𝑄)) |
| 21 | 20 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ≤ (𝐹‘𝑄)) |
| 22 | | simprrr 805 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑄) ≤ (𝐹‘𝑅)) |
| 23 | | simpl 473 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) = (𝐹‘𝑅)) |
| 24 | 22, 23 | breqtrrd 4681 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑄) ≤ (𝐹‘𝑃)) |
| 25 | 24 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑄) ≤ (𝐹‘𝑃)) |
| 26 | | simplr2 1104 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → (𝐹‘𝑄) ∈ (0[,)+∞)) |
| 27 | 26 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑄) ∈ (0[,)+∞)) |
| 28 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑄) ∈ (0[,)+∞) ↔ ((𝐹‘𝑄) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑄))) |
| 29 | 28 | simplbi 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑄) ∈ (0[,)+∞) → (𝐹‘𝑄) ∈ ℝ) |
| 30 | 27, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑄) ∈ ℝ) |
| 31 | 18, 30 | letri3d 10179 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐹‘𝑃) = (𝐹‘𝑄) ↔ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑃)))) |
| 32 | 21, 25, 31 | mpbir2and 957 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) = (𝐹‘𝑄)) |
| 33 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) = (𝐹‘𝑅)) |
| 34 | | simpll2 1101 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) → 𝑍 ∈ (𝔼‘𝑁)) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → 𝑍 ∈ (𝔼‘𝑁)) |
| 36 | 35 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑍 ∈ (𝔼‘𝑁)) |
| 37 | | fveecn 25782 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 38 | 36, 37 | sylancom 701 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 39 | | simpll3 1102 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) → 𝑈 ∈ (𝔼‘𝑁)) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → 𝑈 ∈ (𝔼‘𝑁)) |
| 41 | 40 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → 𝑈 ∈ (𝔼‘𝑁)) |
| 42 | | fveecn 25782 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑈‘𝑖) ∈ ℂ) |
| 43 | 41, 42 | sylancom 701 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑈‘𝑖) ∈ ℂ) |
| 44 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℂ |
| 45 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑃) ∈ ℂ) |
| 46 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℂ ∧ (𝐹‘𝑃) ∈ ℂ) → (1 − (𝐹‘𝑃)) ∈ ℂ) |
| 47 | 44, 45, 46 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (𝐹‘𝑃)) ∈ ℂ) |
| 48 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝑍‘𝑖) ∈ ℂ) |
| 49 | 47, 48 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) ∈ ℂ) |
| 50 | | mulcl 10020 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ) → ((𝐹‘𝑃) · (𝑈‘𝑖)) ∈ ℂ) |
| 51 | 50 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑃) · (𝑈‘𝑖)) ∈ ℂ) |
| 52 | 49, 51 | addcld 10059 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∈ ℂ) |
| 53 | 52 | mulid2d 10058 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 · (((1
− (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 54 | 52 | mul02d 10234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (0 · (((1
− (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = 0) |
| 55 | 53, 54 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 · (((1
− (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) = ((((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) + 0)) |
| 56 | 52 | addid1d 10236 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) + 0) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 57 | 55, 56 | eqtr2d 2657 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))))) |
| 58 | 57 | 3adant2 1080 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝐹‘𝑃) = (𝐹‘𝑄) ∧ (𝐹‘𝑃) = (𝐹‘𝑅)) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))))) |
| 59 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑃) = (𝐹‘𝑄) → (1 − (𝐹‘𝑃)) = (1 − (𝐹‘𝑄))) |
| 60 | 59 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑃) = (𝐹‘𝑄) → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) = ((1 − (𝐹‘𝑄)) · (𝑍‘𝑖))) |
| 61 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑃) = (𝐹‘𝑄) → ((𝐹‘𝑃) · (𝑈‘𝑖)) = ((𝐹‘𝑄) · (𝑈‘𝑖))) |
| 62 | 60, 61 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑃) = (𝐹‘𝑄) → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) |
| 63 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → (1 − (𝐹‘𝑃)) = (1 − (𝐹‘𝑅))) |
| 64 | 63 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) = ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))) |
| 65 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → ((𝐹‘𝑃) · (𝑈‘𝑖)) = ((𝐹‘𝑅) · (𝑈‘𝑖))) |
| 66 | 64, 65 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) |
| 67 | 66 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 68 | 67 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 69 | 62, 68 | eqeqan12d 2638 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) = (𝐹‘𝑄) ∧ (𝐹‘𝑃) = (𝐹‘𝑅)) → ((((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 70 | 69 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝐹‘𝑃) = (𝐹‘𝑄) ∧ (𝐹‘𝑃) = (𝐹‘𝑅)) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 71 | 58, 70 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ∈ ℂ ∧ ((𝐹‘𝑃) = (𝐹‘𝑄) ∧ (𝐹‘𝑃) = (𝐹‘𝑅)) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 72 | 19, 32, 33, 38, 43, 71 | syl122anc 1335 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 73 | 72 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 74 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 0 → (1 − 𝑡) = (1 −
0)) |
| 75 | | 1m0e1 11131 |
. . . . . . . . . . . . . . . . . 18
⊢ (1
− 0) = 1 |
| 76 | 74, 75 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 0 → (1 − 𝑡) = 1) |
| 77 | 76 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 0 → ((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = (1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 78 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 0 → (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) = (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 79 | 77, 78 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 0 → (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 80 | 79 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 0 → ((((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 81 | 80 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 0 → (∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 82 | 81 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((0
∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = ((1 · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (0 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 83 | 13, 73, 82 | sylancr 695 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑃) = (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 84 | 83 | ex 450 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑃) = (𝐹‘𝑅) → (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 85 | 26 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑄) ∈ (0[,)+∞)) |
| 86 | 85, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑄) ∈ ℝ) |
| 87 | | simplr3 1105 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → (𝐹‘𝑅) ∈ (0[,)+∞)) |
| 88 | 87 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑅) ∈ (0[,)+∞)) |
| 89 | | elrege0 12278 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑅) ∈ (0[,)+∞) ↔ ((𝐹‘𝑅) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑅))) |
| 90 | 89 | simplbi 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑅) ∈ (0[,)+∞) → (𝐹‘𝑅) ∈ ℝ) |
| 91 | 88, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑅) ∈ ℝ) |
| 92 | 14 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ∈ (0[,)+∞)) |
| 93 | 92, 17 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ∈ ℝ) |
| 94 | | simprrr 805 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑄) ≤ (𝐹‘𝑅)) |
| 95 | 86, 91, 93, 94 | lesub1dd 10643 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((𝐹‘𝑄) − (𝐹‘𝑃)) ≤ ((𝐹‘𝑅) − (𝐹‘𝑃))) |
| 96 | 86, 93 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((𝐹‘𝑄) − (𝐹‘𝑃)) ∈ ℝ) |
| 97 | | simprrl 804 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ≤ (𝐹‘𝑄)) |
| 98 | 86, 93 | subge0d 10617 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (0 ≤ ((𝐹‘𝑄) − (𝐹‘𝑃)) ↔ (𝐹‘𝑃) ≤ (𝐹‘𝑄))) |
| 99 | 97, 98 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → 0 ≤ ((𝐹‘𝑄) − (𝐹‘𝑃))) |
| 100 | 91, 93 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((𝐹‘𝑅) − (𝐹‘𝑃)) ∈ ℝ) |
| 101 | 93, 86, 91, 97, 94 | letrd 10194 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ≤ (𝐹‘𝑅)) |
| 102 | | simpl 473 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) ≠ (𝐹‘𝑅)) |
| 103 | 102 | necomd 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑅) ≠ (𝐹‘𝑃)) |
| 104 | 93, 91 | ltlend 10182 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((𝐹‘𝑃) < (𝐹‘𝑅) ↔ ((𝐹‘𝑃) ≤ (𝐹‘𝑅) ∧ (𝐹‘𝑅) ≠ (𝐹‘𝑃)))) |
| 105 | 101, 103,
104 | mpbir2and 957 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (𝐹‘𝑃) < (𝐹‘𝑅)) |
| 106 | 93, 91 | posdifd 10614 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((𝐹‘𝑃) < (𝐹‘𝑅) ↔ 0 < ((𝐹‘𝑅) − (𝐹‘𝑃)))) |
| 107 | 105, 106 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → 0 < ((𝐹‘𝑅) − (𝐹‘𝑃))) |
| 108 | | divelunit 12314 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹‘𝑄) − (𝐹‘𝑃)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑄) − (𝐹‘𝑃))) ∧ (((𝐹‘𝑅) − (𝐹‘𝑃)) ∈ ℝ ∧ 0 < ((𝐹‘𝑅) − (𝐹‘𝑃)))) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ (0[,]1) ↔ ((𝐹‘𝑄) − (𝐹‘𝑃)) ≤ ((𝐹‘𝑅) − (𝐹‘𝑃)))) |
| 109 | 96, 99, 100, 107, 108 | syl22anc 1327 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ (0[,]1) ↔ ((𝐹‘𝑄) − (𝐹‘𝑃)) ≤ ((𝐹‘𝑅) − (𝐹‘𝑃)))) |
| 110 | 95, 109 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ (0[,]1)) |
| 111 | 14 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ∈ (0[,)+∞)) |
| 112 | 17 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑃) ∈ (0[,)+∞) → (𝐹‘𝑃) ∈ ℂ) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ∈ ℂ) |
| 114 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑃) ≠ (𝐹‘𝑅)) |
| 115 | 26 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑄) ∈ (0[,)+∞)) |
| 116 | 29 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑄) ∈ (0[,)+∞) → (𝐹‘𝑄) ∈ ℂ) |
| 117 | 115, 116 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑄) ∈ ℂ) |
| 118 | 87 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑅) ∈ (0[,)+∞)) |
| 119 | 90 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑅) ∈ (0[,)+∞) → (𝐹‘𝑅) ∈ ℂ) |
| 120 | 118, 119 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝐹‘𝑅) ∈ ℂ) |
| 121 | 34 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → 𝑍 ∈ (𝔼‘𝑁)) |
| 122 | 121, 37 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑍‘𝑖) ∈ ℂ) |
| 123 | 39 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → 𝑈 ∈ (𝔼‘𝑁)) |
| 124 | 123, 42 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (𝑈‘𝑖) ∈ ℂ) |
| 125 | | simp2r 1088 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑅) ∈ ℂ) |
| 126 | | simp2l 1087 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑄) ∈ ℂ) |
| 127 | 125, 126 | subcld 10392 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑅) − (𝐹‘𝑄)) ∈ ℂ) |
| 128 | | simp1l 1085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑃) ∈ ℂ) |
| 129 | 44, 128, 46 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (𝐹‘𝑃)) ∈ ℂ) |
| 130 | 127, 129 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) ∈ ℂ) |
| 131 | 126, 128 | subcld 10392 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑄) − (𝐹‘𝑃)) ∈ ℂ) |
| 132 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) → (1 − (𝐹‘𝑅)) ∈ ℂ) |
| 133 | 44, 125, 132 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (𝐹‘𝑅)) ∈ ℂ) |
| 134 | 131, 133 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) ∈ ℂ) |
| 135 | 125, 128 | subcld 10392 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑅) − (𝐹‘𝑃)) ∈ ℂ) |
| 136 | | simp1r 1086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑃) ≠ (𝐹‘𝑅)) |
| 137 | 136 | necomd 2849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑅) ≠ (𝐹‘𝑃)) |
| 138 | 125, 128,
137 | subne0d 10401 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑅) − (𝐹‘𝑃)) ≠ 0) |
| 139 | 130, 134,
135, 138 | divdird 10839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 140 | 135 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · 1) = ((𝐹‘𝑅) − (𝐹‘𝑃))) |
| 141 | 135, 126 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)) = ((𝐹‘𝑄) · ((𝐹‘𝑅) − (𝐹‘𝑃)))) |
| 142 | 126, 125,
128 | subdid 10486 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑄) · ((𝐹‘𝑅) − (𝐹‘𝑃))) = (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 143 | 141, 142 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)) = (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 144 | 140, 143 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄))) = (((𝐹‘𝑅) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))))) |
| 145 | | subdi 10463 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑅) − (𝐹‘𝑃)) ∈ ℂ ∧ 1 ∈ ℂ
∧ (𝐹‘𝑄) ∈ ℂ) →
(((𝐹‘𝑅) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑄))) = ((((𝐹‘𝑅) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)))) |
| 146 | 44, 145 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑅) − (𝐹‘𝑃)) ∈ ℂ ∧ (𝐹‘𝑄) ∈ ℂ) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑄))) = ((((𝐹‘𝑅) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)))) |
| 147 | 135, 126,
146 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑄))) = ((((𝐹‘𝑅) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)))) |
| 148 | | subdi 10463 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹‘𝑅) − (𝐹‘𝑄)) ∈ ℂ ∧ 1 ∈ ℂ
∧ (𝐹‘𝑃) ∈ ℂ) →
(((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)))) |
| 149 | 44, 148 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑅) − (𝐹‘𝑄)) ∈ ℂ ∧ (𝐹‘𝑃) ∈ ℂ) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)))) |
| 150 | 127, 128,
149 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)))) |
| 151 | 127 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · 1) = ((𝐹‘𝑅) − (𝐹‘𝑄))) |
| 152 | 125, 126,
128 | subdird 10487 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) = (((𝐹‘𝑅) · (𝐹‘𝑃)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 153 | 125, 128 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑅) · (𝐹‘𝑃)) = ((𝐹‘𝑃) · (𝐹‘𝑅))) |
| 154 | 153 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) · (𝐹‘𝑃)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) = (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 155 | 152, 154 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) = (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 156 | 151, 155 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · 1) − (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃))) = (((𝐹‘𝑅) − (𝐹‘𝑄)) − (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))))) |
| 157 | 150, 156 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) = (((𝐹‘𝑅) − (𝐹‘𝑄)) − (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))))) |
| 158 | | subdi 10463 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹‘𝑄) − (𝐹‘𝑃)) ∈ ℂ ∧ 1 ∈ ℂ
∧ (𝐹‘𝑅) ∈ ℂ) →
(((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)))) |
| 159 | 44, 158 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑄) − (𝐹‘𝑃)) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)))) |
| 160 | 131, 125,
159 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)))) |
| 161 | 131 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · 1) = ((𝐹‘𝑄) − (𝐹‘𝑃))) |
| 162 | 126, 128,
125 | subdird 10487 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)) = (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅)))) |
| 163 | 161, 162 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) · 1) − (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) = (((𝐹‘𝑄) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))))) |
| 164 | 160, 163 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) = (((𝐹‘𝑄) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))))) |
| 165 | 157, 164 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) − (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅)))))) |
| 166 | 128, 125 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑃) · (𝐹‘𝑅)) ∈ ℂ) |
| 167 | 126, 128 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑄) · (𝐹‘𝑃)) ∈ ℂ) |
| 168 | 166, 167 | subcld 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) ∈ ℂ) |
| 169 | | mulcl 10020 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) → ((𝐹‘𝑄) · (𝐹‘𝑅)) ∈ ℂ) |
| 170 | 169 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑄) · (𝐹‘𝑅)) ∈ ℂ) |
| 171 | 170, 166 | subcld 10392 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))) ∈ ℂ) |
| 172 | 127, 131,
168, 171 | addsub4d 10439 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) + ((𝐹‘𝑄) − (𝐹‘𝑃))) − ((((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) + (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) − (((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅)))))) |
| 173 | 125, 126,
128 | npncand 10416 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) + ((𝐹‘𝑄) − (𝐹‘𝑃))) = ((𝐹‘𝑅) − (𝐹‘𝑃))) |
| 174 | 166, 167,
170 | npncan3d 10428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) + (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅)))) = (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃)))) |
| 175 | 173, 174 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) + ((𝐹‘𝑄) − (𝐹‘𝑃))) − ((((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) + (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))))) = (((𝐹‘𝑅) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))))) |
| 176 | 165, 172,
175 | 3eqtr2d 2662 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) = (((𝐹‘𝑅) − (𝐹‘𝑃)) − (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))))) |
| 177 | 144, 147,
176 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑄))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))))) |
| 178 | 130, 134 | addcld 10059 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) ∈ ℂ) |
| 179 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℂ ∧ (𝐹‘𝑄) ∈ ℂ) → (1 − (𝐹‘𝑄)) ∈ ℂ) |
| 180 | 44, 126, 179 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (𝐹‘𝑄)) ∈ ℂ) |
| 181 | 178, 135,
180, 138 | divmuld 10823 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (1 − (𝐹‘𝑄)) ↔ (((𝐹‘𝑅) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑄))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))))) |
| 182 | 177, 181 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅)))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (1 − (𝐹‘𝑄))) |
| 183 | 127, 129,
135, 138 | div23d 10838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑃)))) |
| 184 | 135, 131,
135, 138 | divsubdird 10840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑃)) − ((𝐹‘𝑄) − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 185 | 125, 126,
128 | nnncan2d 10427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) − ((𝐹‘𝑄) − (𝐹‘𝑃))) = ((𝐹‘𝑅) − (𝐹‘𝑄))) |
| 186 | 185 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑃)) − ((𝐹‘𝑄) − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) |
| 187 | 135, 138 | dividd 10799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = 1) |
| 188 | 187 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) = (1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 189 | 184, 186,
188 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 190 | 189 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑃))) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃)))) |
| 191 | 183, 190 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃)))) |
| 192 | 131, 133,
135, 138 | div23d 10838 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) |
| 193 | 191, 192 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (1 − (𝐹‘𝑃))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (1 − (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))))) |
| 194 | 139, 182,
193 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (𝐹‘𝑄)) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))))) |
| 195 | 194 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖))) |
| 196 | 127, 128 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) ∈ ℂ) |
| 197 | 131, 125 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)) ∈ ℂ) |
| 198 | 196, 197,
135, 138 | divdird 10839 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 199 | 155, 162 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) = ((((𝐹‘𝑃) · (𝐹‘𝑅)) − ((𝐹‘𝑄) · (𝐹‘𝑃))) + (((𝐹‘𝑄) · (𝐹‘𝑅)) − ((𝐹‘𝑃) · (𝐹‘𝑅))))) |
| 200 | 174, 199,
143 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)))) |
| 201 | 196, 197 | addcld 10059 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) ∈ ℂ) |
| 202 | 201, 135,
126, 138 | divmuld 10823 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (𝐹‘𝑄) ↔ (((𝐹‘𝑅) − (𝐹‘𝑃)) · (𝐹‘𝑄)) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))))) |
| 203 | 200, 202 | mpbird 247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) + (((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅))) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = (𝐹‘𝑄)) |
| 204 | 127, 128,
135, 138 | div23d 10838 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑃))) |
| 205 | 189 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑃)) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃))) |
| 206 | 204, 205 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃))) |
| 207 | 131, 125,
135, 138 | div23d 10838 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) |
| 208 | 206, 207 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑅) − (𝐹‘𝑄)) · (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) · (𝐹‘𝑅)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)))) |
| 209 | 198, 203,
208 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝐹‘𝑄) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)))) |
| 210 | 209 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑄) · (𝑈‘𝑖)) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖))) |
| 211 | 195, 210 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖)) + ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖)))) |
| 212 | 131, 135,
138 | divcld 10801 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ ℂ) |
| 213 | | subcl 10280 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℂ ∧ (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ ℂ) → (1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) ∈ ℂ) |
| 214 | 44, 212, 213 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) ∈ ℂ) |
| 215 | | simp3l 1089 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝑍‘𝑖) ∈ ℂ) |
| 216 | 129, 215 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) ∈ ℂ) |
| 217 | 214, 216 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) ∈ ℂ) |
| 218 | 133, 215 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) ∈ ℂ) |
| 219 | 212, 218 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))) ∈ ℂ) |
| 220 | | simp3r 1090 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (𝑈‘𝑖) ∈ ℂ) |
| 221 | 128, 220 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑃) · (𝑈‘𝑖)) ∈ ℂ) |
| 222 | 214, 221 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))) ∈ ℂ) |
| 223 | 125, 220 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((𝐹‘𝑅) · (𝑈‘𝑖)) ∈ ℂ) |
| 224 | 212, 223 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖))) ∈ ℂ) |
| 225 | 217, 219,
222, 224 | add4d 10264 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)))) + (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖))))) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 226 | 214, 129 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) ∈ ℂ) |
| 227 | 212, 133 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))) ∈ ℂ) |
| 228 | 226, 227,
215 | adddird 10065 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖)) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) · (𝑍‘𝑖)) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))) · (𝑍‘𝑖)))) |
| 229 | 214, 129,
215 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) · (𝑍‘𝑖)) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)))) |
| 230 | 212, 133,
215 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))) · (𝑍‘𝑖)) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)))) |
| 231 | 229, 230 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) · (𝑍‘𝑖)) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅))) · (𝑍‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))))) |
| 232 | 228, 231 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖)) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))))) |
| 233 | 214, 128 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) ∈ ℂ) |
| 234 | 212, 125 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)) ∈ ℂ) |
| 235 | 233, 234,
220 | adddird 10065 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖)) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) · (𝑈‘𝑖)) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)) · (𝑈‘𝑖)))) |
| 236 | 214, 128,
220 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) · (𝑈‘𝑖)) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖)))) |
| 237 | 212, 125,
220 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)) · (𝑈‘𝑖)) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖)))) |
| 238 | 236, 237 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) · (𝑈‘𝑖)) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅)) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 239 | 235, 238 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖)) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 240 | 232, 239 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖)) + ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖))) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)))) + (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 241 | 214, 216,
221 | adddid 10064 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 242 | 212, 218,
223 | adddid 10064 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) = (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 243 | 241, 242 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) = ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((1 − (𝐹‘𝑃)) · (𝑍‘𝑖))) + ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((1 − (𝐹‘𝑅)) · (𝑍‘𝑖))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 244 | 225, 240,
243 | 3eqtr4rd 2667 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 −
(((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) = (((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (1 − (𝐹‘𝑃))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (1 − (𝐹‘𝑅)))) · (𝑍‘𝑖)) + ((((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (𝐹‘𝑃)) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (𝐹‘𝑅))) · (𝑈‘𝑖)))) |
| 245 | 211, 244 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑃) ∈ ℂ ∧ (𝐹‘𝑃) ≠ (𝐹‘𝑅)) ∧ ((𝐹‘𝑄) ∈ ℂ ∧ (𝐹‘𝑅) ∈ ℂ) ∧ ((𝑍‘𝑖) ∈ ℂ ∧ (𝑈‘𝑖) ∈ ℂ)) → (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 246 | 113, 114,
117, 120, 122, 124, 245 | syl222anc 1342 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 247 | 246 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 248 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → (1 − 𝑡) = (1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))))) |
| 249 | 248 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → ((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) = ((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 250 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) = ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 251 | 249, 250 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 252 | 251 | eqeq2d 2632 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → ((((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 253 | 252 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑡 = (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) → (∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 254 | 253 | rspcev 3309 |
. . . . . . . . . . . 12
⊢
(((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) ∈ (0[,]1) ∧ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − (((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃)))) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + ((((𝐹‘𝑄) − (𝐹‘𝑃)) / ((𝐹‘𝑅) − (𝐹‘𝑃))) · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 255 | 110, 247,
254 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑃) ≠ (𝐹‘𝑅) ∧ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 256 | 255 | ex 450 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑃) ≠ (𝐹‘𝑅) → (((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 257 | 84, 256 | pm2.61ine 2877 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 258 | | r19.26-3 3066 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
(1...𝑁)((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) ↔ (∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 259 | | simp2 1062 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) |
| 260 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) → ((1 − 𝑡) · (𝑃‘𝑖)) = ((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))))) |
| 261 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))) → (𝑡 · (𝑅‘𝑖)) = (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) |
| 262 | 260, 261 | oveqan12d 6669 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 263 | 262 | 3adant2 1080 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) |
| 264 | 259, 263 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ((𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 265 | 264 | ralimi 2952 |
. . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
(1...𝑁)((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)((𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 266 | | ralbi 3068 |
. . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
(1...𝑁)((𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))))) → (∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 267 | 265, 266 | syl 17 |
. . . . . . . . . . . 12
⊢
(∀𝑖 ∈
(1...𝑁)((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → (∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 268 | 267 | rexbidv 3052 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(1...𝑁)((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))))) |
| 269 | 268 | biimprcd 240 |
. . . . . . . . . 10
⊢
(∃𝑡 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) → (∀𝑖 ∈ (1...𝑁)((𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ (𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ (𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 270 | 258, 269 | syl5bir 233 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) = (((1 − 𝑡) · (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) + (𝑡 · (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) → ((∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 271 | 257, 270 | syl 17 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ((∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 272 | 271 | an32s 846 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) ∧ ((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞))) →
((∀𝑖 ∈
(1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖)))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 273 | 272 | expimpd 629 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ((((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞)) ∧
(∀𝑖 ∈
(1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 274 | 273 | adantlr 751 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ((((𝐹‘𝑃) ∈ (0[,)+∞) ∧ (𝐹‘𝑄) ∈ (0[,)+∞) ∧ (𝐹‘𝑅) ∈ (0[,)+∞)) ∧
(∀𝑖 ∈
(1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖))) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 275 | 12, 274 | syl5bi 232 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ((((𝐹‘𝑃) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑃‘𝑖) = (((1 − (𝐹‘𝑃)) · (𝑍‘𝑖)) + ((𝐹‘𝑃) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑄) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − (𝐹‘𝑄)) · (𝑍‘𝑖)) + ((𝐹‘𝑄) · (𝑈‘𝑖)))) ∧ ((𝐹‘𝑅) ∈ (0[,)+∞) ∧ ∀𝑖 ∈ (1...𝑁)(𝑅‘𝑖) = (((1 − (𝐹‘𝑅)) · (𝑍‘𝑖)) + ((𝐹‘𝑅) · (𝑈‘𝑖))))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 276 | 11, 275 | mpd 15 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖)))) |
| 277 | | simpl1 1064 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) → 𝑁 ∈ ℕ) |
| 278 | | ssrab2 3687 |
. . . . . . . . 9
⊢ {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn 〈𝑍, 𝑝〉 ∨ 𝑝 Btwn 〈𝑍, 𝑈〉)} ⊆ (𝔼‘𝑁) |
| 279 | 1, 278 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝐷 ⊆ (𝔼‘𝑁) |
| 280 | 279 | sseli 3599 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐷 → 𝑄 ∈ (𝔼‘𝑁)) |
| 281 | 279 | sseli 3599 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐷 → 𝑃 ∈ (𝔼‘𝑁)) |
| 282 | 279 | sseli 3599 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐷 → 𝑅 ∈ (𝔼‘𝑁)) |
| 283 | 280, 281,
282 | 3anim123i 1247 |
. . . . . 6
⊢ ((𝑄 ∈ 𝐷 ∧ 𝑃 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) |
| 284 | 283 | 3com12 1269 |
. . . . 5
⊢ ((𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) |
| 285 | | brbtwn 25779 |
. . . . . 6
⊢ ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) → (𝑄 Btwn 〈𝑃, 𝑅〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 286 | 285 | adantl 482 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑄 Btwn 〈𝑃, 𝑅〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 287 | 277, 284,
286 | syl2an 494 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (𝑄 Btwn 〈𝑃, 𝑅〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 288 | 287 | adantr 481 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → (𝑄 Btwn 〈𝑃, 𝑅〉 ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑄‘𝑖) = (((1 − 𝑡) · (𝑃‘𝑖)) + (𝑡 · (𝑅‘𝑖))))) |
| 289 | 276, 288 | mpbird 247 |
. 2
⊢
(((((𝑁 ∈
ℕ ∧ 𝑍 ∈
(𝔼‘𝑁) ∧
𝑈 ∈
(𝔼‘𝑁)) ∧
𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) ∧ ((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅))) → 𝑄 Btwn 〈𝑃, 𝑅〉) |
| 290 | 289 | ex 450 |
1
⊢ ((((𝑁 ∈ ℕ ∧ 𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈 ∈ (𝔼‘𝑁)) ∧ 𝑍 ≠ 𝑈) ∧ (𝑃 ∈ 𝐷 ∧ 𝑄 ∈ 𝐷 ∧ 𝑅 ∈ 𝐷)) → (((𝐹‘𝑃) ≤ (𝐹‘𝑄) ∧ (𝐹‘𝑄) ≤ (𝐹‘𝑅)) → 𝑄 Btwn 〈𝑃, 𝑅〉)) |