MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqsn Structured version   Visualization version   GIF version

Theorem rabeqsn 4214
Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.)
Assertion
Ref Expression
rabeqsn ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabeqsn
StepHypRef Expression
1 df-rab 2921 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
2 df-sn 4178 . . 3 {𝑋} = {𝑥𝑥 = 𝑋}
31, 2eqeq12i 2636 . 2 ({𝑥𝑉𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} = {𝑥𝑥 = 𝑋})
4 abbi 2737 . 2 (∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋) ↔ {𝑥 ∣ (𝑥𝑉𝜑)} = {𝑥𝑥 = 𝑋})
53, 4bitr4i 267 1 ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921  df-sn 4178
This theorem is referenced by:  umgr2v2enb1  26422  rabeqsnd  29342  k0004val0  38452
  Copyright terms: Public domain W3C validator