Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeqsnd Structured version   Visualization version   GIF version

Theorem rabeqsnd 29342
Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
rabeqsnd.0 (𝑥 = 𝐵 → (𝜓𝜒))
rabeqsnd.1 (𝜑𝐵𝐴)
rabeqsnd.2 (𝜑𝜒)
rabeqsnd.3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝑥 = 𝐵)
Assertion
Ref Expression
rabeqsnd (𝜑 → {𝑥𝐴𝜓} = {𝐵})
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabeqsnd
StepHypRef Expression
1 rabeqsnd.3 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝑥 = 𝐵)
21expl 648 . . . . 5 (𝜑 → ((𝑥𝐴𝜓) → 𝑥 = 𝐵))
32alrimiv 1855 . . . 4 (𝜑 → ∀𝑥((𝑥𝐴𝜓) → 𝑥 = 𝐵))
4 rabeqsnd.1 . . . . . . . 8 (𝜑𝐵𝐴)
5 rabeqsnd.2 . . . . . . . 8 (𝜑𝜒)
64, 5jca 554 . . . . . . 7 (𝜑 → (𝐵𝐴𝜒))
76a1d 25 . . . . . 6 (𝜑 → (𝑥 = 𝐵 → (𝐵𝐴𝜒)))
87alrimiv 1855 . . . . 5 (𝜑 → ∀𝑥(𝑥 = 𝐵 → (𝐵𝐴𝜒)))
9 eleq1 2689 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
10 rabeqsnd.0 . . . . . . . 8 (𝑥 = 𝐵 → (𝜓𝜒))
119, 10anbi12d 747 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥𝐴𝜓) ↔ (𝐵𝐴𝜒)))
1211pm5.74i 260 . . . . . 6 ((𝑥 = 𝐵 → (𝑥𝐴𝜓)) ↔ (𝑥 = 𝐵 → (𝐵𝐴𝜒)))
1312albii 1747 . . . . 5 (∀𝑥(𝑥 = 𝐵 → (𝑥𝐴𝜓)) ↔ ∀𝑥(𝑥 = 𝐵 → (𝐵𝐴𝜒)))
148, 13sylibr 224 . . . 4 (𝜑 → ∀𝑥(𝑥 = 𝐵 → (𝑥𝐴𝜓)))
153, 14jca 554 . . 3 (𝜑 → (∀𝑥((𝑥𝐴𝜓) → 𝑥 = 𝐵) ∧ ∀𝑥(𝑥 = 𝐵 → (𝑥𝐴𝜓))))
16 albiim 1816 . . 3 (∀𝑥((𝑥𝐴𝜓) ↔ 𝑥 = 𝐵) ↔ (∀𝑥((𝑥𝐴𝜓) → 𝑥 = 𝐵) ∧ ∀𝑥(𝑥 = 𝐵 → (𝑥𝐴𝜓))))
1715, 16sylibr 224 . 2 (𝜑 → ∀𝑥((𝑥𝐴𝜓) ↔ 𝑥 = 𝐵))
18 rabeqsn 4214 . 2 ({𝑥𝐴𝜓} = {𝐵} ↔ ∀𝑥((𝑥𝐴𝜓) ↔ 𝑥 = 𝐵))
1917, 18sylibr 224 1 (𝜑 → {𝑥𝐴𝜓} = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  {crab 2916  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-rab 2921  df-sn 4178
This theorem is referenced by:  repr0  30689
  Copyright terms: Public domain W3C validator