![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabswap | Structured version Visualization version GIF version |
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.) |
Ref | Expression |
---|---|
rabswap | ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | abbii 2739 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)} |
3 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
4 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)} | |
5 | 2, 3, 4 | 3eqtr4i 2654 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-rab 2921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |