MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Visualization version   GIF version

Theorem rabbi 3120
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3188. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2737 . 2 (∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)) ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
2 df-ral 2917 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
3 pm5.32 668 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43albii 1747 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
52, 4bitri 264 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
6 df-rab 2921 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
7 df-rab 2921 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
86, 7eqeq12i 2636 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
91, 5, 83bitr4i 292 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  {cab 2608  wral 2912  {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-rab 2921
This theorem is referenced by:  rabbidva  3188  kqfeq  21527  isr0  21540  bj-rabbida  32914  rabeq12f  33965  eq0rabdioph  37340  eqrabdioph  37341  lerabdioph  37369  eluzrabdioph  37370  ltrabdioph  37372  nerabdioph  37373  dvdsrabdioph  37374  undisjrab  38505  rabbida  39274  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149  fourierdlem89  40412  fourierdlem91  40414  fourierdlem100  40423  fourierdlem108  40431  fourierdlem112  40435  ovn0  40780  issmfdmpt  40957
  Copyright terms: Public domain W3C validator