![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralanid | Structured version Visualization version GIF version |
Description: Cancellation law for restriction. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
ralanid | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anclb 570 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | 1 | albii 1747 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
3 | df-ral 2917 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
4 | df-ral 2917 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
5 | 2, 3, 4 | 3bitr4ri 293 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ral 2917 |
This theorem is referenced by: idinxpssinxp2 34089 |
Copyright terms: Public domain | W3C validator |