![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr4ri | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 2-Sep-1995.) |
Ref | Expression |
---|---|
3bitr4i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr4i.2 | ⊢ (𝜒 ↔ 𝜑) |
3bitr4i.3 | ⊢ (𝜃 ↔ 𝜓) |
Ref | Expression |
---|---|
3bitr4ri | ⊢ (𝜃 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
2 | 3bitr4i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 3bitr4i.3 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
4 | 2, 3 | bitr4i 267 | . 2 ⊢ (𝜑 ↔ 𝜃) |
5 | 1, 4 | bitr2i 265 | 1 ⊢ (𝜃 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: pm4.78 606 xor 935 nannan 1451 nic-ax 1598 2sb5 2443 2sb6 2444 2sb5rf 2451 moabs 2501 2mo2 2550 2eu7 2559 2eu8 2560 r3al 2940 r2exlem 3059 risset 3062 r19.35 3084 ralxpxfr2d 3327 reuind 3411 undif3 3888 undif3OLD 3889 unab 3894 inab 3895 n0el 3940 inssdif0 3947 ssundif 4052 ralf0 4078 snss 4316 raldifsnb 4325 pwtp 4431 unipr 4449 uni0b 4463 iinuni 4609 reusv2lem4 4872 pwtr 4921 elxp2OLD 5133 opthprc 5167 xpiundir 5174 xpsspw 5233 relun 5235 inopab 5252 difopab 5253 ralxpf 5268 dmiun 5333 inisegn0 5497 rniun 5543 imaco 5640 mptfnf 6015 fnopabg 6017 dff1o2 6142 brprcneu 6184 idref 6499 imaiun 6503 sorpss 6942 opabex3d 7145 opabex3 7146 ovmptss 7258 fnsuppres 7322 rankc1 8733 aceq1 8940 dfac10 8959 fin41 9266 axgroth6 9650 genpass 9831 infm3 10982 prime 11458 elixx3g 12188 elfz2 12333 elfzuzb 12336 rpnnen2lem12 14954 divalgb 15127 1nprm 15392 maxprmfct 15421 vdwmc 15682 imasleval 16201 issubm 17347 issubg3 17612 efgrelexlemb 18163 ist1-2 21151 unisngl 21330 elflim2 21768 isfcls 21813 istlm 21988 isnlm 22479 ishl2 23166 erclwwlksref 26934 erclwwlksnref 26946 0wlk 26977 h1de2ctlem 28414 nonbooli 28510 5oalem7 28519 ho01i 28687 rnbra 28966 cvnbtwn3 29147 chrelat2i 29224 moel 29323 difrab2 29339 uniinn0 29366 disjex 29405 maprnin 29506 ordtconnlem1 29970 esum2dlem 30154 eulerpartgbij 30434 eulerpartlemr 30436 eulerpartlemn 30443 ballotlem2 30550 bnj976 30848 bnj1185 30864 bnj543 30963 bnj571 30976 bnj611 30988 bnj916 31003 bnj1000 31011 bnj1040 31040 iscvm 31241 untuni 31586 dfso3 31601 dffr5 31643 elima4 31679 brtxpsd3 32003 brbigcup 32005 fixcnv 32015 ellimits 32017 elfuns 32022 brimage 32033 brcart 32039 brimg 32044 brapply 32045 brcup 32046 brcap 32047 dfrdg4 32058 dfint3 32059 ellines 32259 elicc3 32311 bj-ssb1 32633 bj-snsetex 32951 bj-snglc 32957 bj-projun 32982 bj-vjust2 33015 wl-cases2-dnf 33295 poimirlem27 33436 mblfinlem2 33447 iscrngo2 33796 ralanid 34010 n0elqs 34098 prtlem70 34141 prtlem100 34144 prtlem15 34160 prter2 34166 lcvnbtwn3 34315 ishlat1 34639 ishlat2 34640 hlrelat2 34689 islpln5 34821 islvol5 34865 pclclN 35177 cdleme0nex 35577 aaitgo 37732 isdomn3 37782 imaiun1 37943 relexp0eq 37993 ntrk1k3eqk13 38348 2sbc6g 38616 2sbc5g 38617 2reu7 41191 2reu8 41192 alsconv 42536 |
Copyright terms: Public domain | W3C validator |