Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpssinxp2 Structured version   Visualization version   GIF version

Theorem idinxpssinxp2 34089
Description: Identity intersection with a square Cartesian product in subclass relation with an intersection with the same Cartesian product. (Contributed by Peter Mazsa, 4-Mar-2019.)
Assertion
Ref Expression
idinxpssinxp2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idinxpssinxp2
StepHypRef Expression
1 idinxpres 34088 . . . 4 ( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
21sseq1i 3629 . . 3 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
3 issref 5509 . . 3 (( I ↾ 𝐴) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
4 brinxp2ALTV 34034 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
5 pm4.24 675 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐴))
65anbi1i 731 . . . . 5 ((𝑥𝐴𝑥𝑅𝑥) ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
74, 6bitr4i 267 . . . 4 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ (𝑥𝐴𝑥𝑅𝑥))
87ralbii 2980 . . 3 (∀𝑥𝐴 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
92, 3, 83bitri 286 . 2 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥))
10 ralanid 34010 . 2 (∀𝑥𝐴 (𝑥𝐴𝑥𝑅𝑥) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
119, 10bitri 264 1 (( I ∩ (𝐴 × 𝐴)) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wcel 1990  wral 2912  cin 3573  wss 3574   class class class wbr 4653   I cid 5023   × cxp 5112  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891
This theorem is referenced by:  idinxpssinxp3  34090  idinxpssinxp4  34091
  Copyright terms: Public domain W3C validator