Proof of Theorem ralcom2
| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 2 | 1 | sps 2055 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 3 | 2 | imbi1d 331 |
. . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜑))) |
| 4 | 3 | dral1 2325 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
| 5 | 4 | bicomd 213 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦(𝑦 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
| 6 | | df-ral 2917 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
| 7 | | df-ral 2917 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 8 | 5, 6, 7 | 3bitr4g 303 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 9 | 2, 8 | imbi12d 334 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) ↔ (𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑))) |
| 10 | 9 | dral1 2325 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑))) |
| 11 | | df-ral 2917 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑)) |
| 12 | | df-ral 2917 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 13 | 10, 11, 12 | 3bitr4g 303 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
| 14 | 13 | biimpd 219 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
| 15 | | nfnae 2318 |
. . . . 5
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
| 16 | | nfra2 2946 |
. . . . 5
⊢
Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| 17 | 15, 16 | nfan 1828 |
. . . 4
⊢
Ⅎ𝑦(¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
| 18 | | nfnae 2318 |
. . . . . . . 8
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
| 19 | | nfra1 2941 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
| 20 | 18, 19 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
| 21 | | nfcvf 2788 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| 22 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥𝑦) |
| 23 | | nfcvd 2765 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥𝐴) |
| 24 | 22, 23 | nfeld 2773 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 25 | 20, 24 | nfan1 2068 |
. . . . . 6
⊢
Ⅎ𝑥((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) |
| 26 | | rsp2 2936 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑)) |
| 27 | 26 | ancomsd 470 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝜑)) |
| 28 | 27 | expdimp 453 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 29 | 28 | adantll 750 |
. . . . . 6
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 30 | 25, 29 | ralrimi 2957 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) ∧ 𝑦 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 𝜑) |
| 31 | 30 | ex 450 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → (𝑦 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) |
| 32 | 17, 31 | ralrimi 2957 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |
| 33 | 32 | ex 450 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑)) |
| 34 | 14, 33 | pm2.61i 176 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) |