| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralcom2 | Structured version Visualization version Unicode version | ||
| Description: Commutation of restricted
universal quantifiers. Note that |
| Ref | Expression |
|---|---|
| ralcom2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 |
. . . . . . 7
| |
| 2 | 1 | sps 2055 |
. . . . . 6
|
| 3 | 2 | imbi1d 331 |
. . . . . . . . 9
|
| 4 | 3 | dral1 2325 |
. . . . . . . 8
|
| 5 | 4 | bicomd 213 |
. . . . . . 7
|
| 6 | df-ral 2917 |
. . . . . . 7
| |
| 7 | df-ral 2917 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | 3bitr4g 303 |
. . . . . 6
|
| 9 | 2, 8 | imbi12d 334 |
. . . . 5
|
| 10 | 9 | dral1 2325 |
. . . 4
|
| 11 | df-ral 2917 |
. . . 4
| |
| 12 | df-ral 2917 |
. . . 4
| |
| 13 | 10, 11, 12 | 3bitr4g 303 |
. . 3
|
| 14 | 13 | biimpd 219 |
. 2
|
| 15 | nfnae 2318 |
. . . . 5
| |
| 16 | nfra2 2946 |
. . . . 5
| |
| 17 | 15, 16 | nfan 1828 |
. . . 4
|
| 18 | nfnae 2318 |
. . . . . . . 8
| |
| 19 | nfra1 2941 |
. . . . . . . 8
| |
| 20 | 18, 19 | nfan 1828 |
. . . . . . 7
|
| 21 | nfcvf 2788 |
. . . . . . . . 9
| |
| 22 | 21 | adantr 481 |
. . . . . . . 8
|
| 23 | nfcvd 2765 |
. . . . . . . 8
| |
| 24 | 22, 23 | nfeld 2773 |
. . . . . . 7
|
| 25 | 20, 24 | nfan1 2068 |
. . . . . 6
|
| 26 | rsp2 2936 |
. . . . . . . . 9
| |
| 27 | 26 | ancomsd 470 |
. . . . . . . 8
|
| 28 | 27 | expdimp 453 |
. . . . . . 7
|
| 29 | 28 | adantll 750 |
. . . . . 6
|
| 30 | 25, 29 | ralrimi 2957 |
. . . . 5
|
| 31 | 30 | ex 450 |
. . . 4
|
| 32 | 17, 31 | ralrimi 2957 |
. . 3
|
| 33 | 32 | ex 450 |
. 2
|
| 34 | 14, 33 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
| This theorem is referenced by: tz7.48lem 7536 imo72b2 38475 tratrb 38746 tratrbVD 39097 |
| Copyright terms: Public domain | W3C validator |