![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > raleqd | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
raleqd.a | ⊢ Ⅎ𝑥𝐴 |
raleqd.b | ⊢ Ⅎ𝑥𝐵 |
raleqd.e | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.e | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | raleqd.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | raleqd.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | raleqf 3134 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 Ⅎwnfc 2751 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
This theorem is referenced by: allbutfiinf 39647 |
Copyright terms: Public domain | W3C validator |