| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralimda | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralimda.1 | ⊢ Ⅎ𝑥𝜑 |
| ralimda.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimda | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimda.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfra1 2941 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜓 | |
| 3 | 1, 2 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) |
| 4 | id 22 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝐴)) | |
| 5 | 4 | adantlr 751 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 ∧ 𝑥 ∈ 𝐴)) |
| 6 | rspa 2930 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜓) | |
| 7 | 6 | adantll 750 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| 8 | ralimda.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 9 | 5, 7, 8 | sylc 65 | . . 3 ⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ 𝑥 ∈ 𝐴) → 𝜒) |
| 10 | 3, 9 | ralrimia 39315 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 11 | 10 | ex 450 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-ral 2917 |
| This theorem is referenced by: xlimmnfvlem1 40058 xlimmnfvlem2 40059 xlimpnfvlem1 40062 xlimpnfvlem2 40063 |
| Copyright terms: Public domain | W3C validator |