| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralimralim | Structured version Visualization version GIF version | ||
| Description: Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| ralimralim | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2941 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rspa 2930 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜑) | |
| 3 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜑)) |
| 5 | 4 | ex 450 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜑))) |
| 6 | 1, 5 | ralrimi 2957 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-ral 2917 |
| This theorem is referenced by: infxrunb2 39584 |
| Copyright terms: Public domain | W3C validator |