| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralnex3 | Structured version Visualization version GIF version | ||
| Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| ralnex3 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑) | |
| 2 | notnotb 304 | . . . . 5 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 3 | 2 | rexbii 3041 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑧 ∈ 𝐶 ¬ ¬ 𝜑) |
| 4 | 3 | 2rexbii 3042 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ ¬ 𝜑) |
| 5 | rexnal3 3044 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 ¬ ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑) | |
| 6 | 4, 5 | bitr2i 265 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) |
| 7 | 1, 6 | xchbinx 324 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∀wral 2912 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: axtgupdim2 25370 |
| Copyright terms: Public domain | W3C validator |