![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rexbii | Structured version Visualization version GIF version |
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2rexbii | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | rexbii 3041 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
3 | 2 | rexbii 3041 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wrex 2913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-rex 2918 |
This theorem is referenced by: rexnal3 3044 ralnex2 3045 ralnex3 3046 3reeanv 3108 addcompr 9843 mulcompr 9845 4fvwrd4 12459 ntrivcvgmul 14634 prodmo 14666 pythagtriplem2 15522 pythagtrip 15539 isnsgrp 17288 efgrelexlemb 18163 ordthaus 21188 regr1lem2 21543 fmucndlem 22095 dfcgra2 25721 axpasch 25821 axeuclid 25843 axcontlem4 25847 umgr2edg1 26103 xrofsup 29533 poseq 31750 madeval2 31936 altopelaltxp 32083 brsegle 32215 mzpcompact2lem 37314 sbc4rex 37353 7rexfrabdioph 37364 expdiophlem1 37588 fourierdlem42 40366 ldepslinc 42298 |
Copyright terms: Public domain | W3C validator |