MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbii Structured version   Visualization version   GIF version

Theorem 2rexbii 3042
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
rexbii.1 (𝜑𝜓)
Assertion
Ref Expression
2rexbii (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)

Proof of Theorem 2rexbii
StepHypRef Expression
1 rexbii.1 . . 3 (𝜑𝜓)
21rexbii 3041 . 2 (∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 𝜓)
32rexbii 3041 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-rex 2918
This theorem is referenced by:  rexnal3  3044  ralnex2  3045  ralnex3  3046  3reeanv  3108  addcompr  9843  mulcompr  9845  4fvwrd4  12459  ntrivcvgmul  14634  prodmo  14666  pythagtriplem2  15522  pythagtrip  15539  isnsgrp  17288  efgrelexlemb  18163  ordthaus  21188  regr1lem2  21543  fmucndlem  22095  dfcgra2  25721  axpasch  25821  axeuclid  25843  axcontlem4  25847  umgr2edg1  26103  xrofsup  29533  poseq  31750  madeval2  31936  altopelaltxp  32083  brsegle  32215  mzpcompact2lem  37314  sbc4rex  37353  7rexfrabdioph  37364  expdiophlem1  37588  fourierdlem42  40366  ldepslinc  42298
  Copyright terms: Public domain W3C validator