Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralralimp Structured version   Visualization version   GIF version

Theorem ralralimp 41295
Description: Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.)
Assertion
Ref Expression
ralralimp ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜏,𝑥
Allowed substitution hint:   𝜃(𝑥)

Proof of Theorem ralralimp
StepHypRef Expression
1 ornld 940 . . . 4 (𝜑 → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
21adantr 481 . . 3 ((𝜑𝐴 ≠ ∅) → (((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
32ralimdv 2963 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → ∀𝑥𝐴 𝜏))
4 rspn0 3934 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜏𝜏))
54adantl 482 . 2 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 𝜏𝜏))
63, 5syld 47 1 ((𝜑𝐴 ≠ ∅) → (∀𝑥𝐴 ((𝜑 → (𝜃𝜏)) ∧ ¬ 𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  wne 2794  wral 2912  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator