| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsn | Structured version Visualization version GIF version | ||
| Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| relsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5121 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
| 2 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snss 4316 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)) |
| 4 | 1, 3 | bitr4i 267 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 {csn 4177 × cxp 5112 Rel wrel 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-sn 4178 df-rel 5121 |
| This theorem is referenced by: relsnop 5224 relsn2 5605 setscom 15903 setsid 15914 |
| Copyright terms: Public domain | W3C validator |