MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setscom Structured version   Visualization version   GIF version

Theorem setscom 15903
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setscom.1 𝐴 ∈ V
setscom.2 𝐵 ∈ V
Assertion
Ref Expression
setscom (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setscom
StepHypRef Expression
1 rescom 5423 . . . . . 6 ((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) = ((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴}))
21uneq1i 3763 . . . . 5 (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})
32uneq1i 3763 . . . 4 ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩})
4 un23 3772 . . . 4 ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩})
53, 4eqtri 2644 . . 3 ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩})
6 setsval 15888 . . . . . . 7 ((𝑆𝑉𝐶𝑊) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
76ad2ant2r 783 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
87reseq1d 5395 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})))
9 resundir 5411 . . . . . 6 (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})))
10 setscom.1 . . . . . . . . . 10 𝐴 ∈ V
11 elex 3212 . . . . . . . . . . 11 (𝐶𝑊𝐶 ∈ V)
1211ad2antrl 764 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐶 ∈ V)
13 opelxpi 5148 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐴, 𝐶⟩ ∈ (V × V))
1410, 12, 13sylancr 695 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ⟨𝐴, 𝐶⟩ ∈ (V × V))
15 opex 4932 . . . . . . . . . 10 𝐴, 𝐶⟩ ∈ V
1615relsn 5223 . . . . . . . . 9 (Rel {⟨𝐴, 𝐶⟩} ↔ ⟨𝐴, 𝐶⟩ ∈ (V × V))
1714, 16sylibr 224 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → Rel {⟨𝐴, 𝐶⟩})
18 dmsnopss 5607 . . . . . . . . 9 dom {⟨𝐴, 𝐶⟩} ⊆ {𝐴}
19 disjsn2 4247 . . . . . . . . . . 11 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2019ad2antlr 763 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({𝐴} ∩ {𝐵}) = ∅)
21 disj2 4024 . . . . . . . . . 10 (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴} ⊆ (V ∖ {𝐵}))
2220, 21sylib 208 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → {𝐴} ⊆ (V ∖ {𝐵}))
2318, 22syl5ss 3614 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → dom {⟨𝐴, 𝐶⟩} ⊆ (V ∖ {𝐵}))
24 relssres 5437 . . . . . . . 8 ((Rel {⟨𝐴, 𝐶⟩} ∧ dom {⟨𝐴, 𝐶⟩} ⊆ (V ∖ {𝐵})) → ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})) = {⟨𝐴, 𝐶⟩})
2517, 23, 24syl2anc 693 . . . . . . 7 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})) = {⟨𝐴, 𝐶⟩})
2625uneq2d 3767 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵}))) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
279, 26syl5eq 2668 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
288, 27eqtrd 2656 . . . 4 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
2928uneq1d 3766 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}))
30 setsval 15888 . . . . . . 7 ((𝑆𝑉𝐷𝑋) → (𝑆 sSet ⟨𝐵, 𝐷⟩) = ((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
3130reseq1d 5395 . . . . . 6 ((𝑆𝑉𝐷𝑋) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})))
3231ad2ant2rl 785 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})))
33 resundir 5411 . . . . . 6 (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})))
34 setscom.2 . . . . . . . . . 10 𝐵 ∈ V
35 elex 3212 . . . . . . . . . . 11 (𝐷𝑋𝐷 ∈ V)
3635ad2antll 765 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐷 ∈ V)
37 opelxpi 5148 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐵, 𝐷⟩ ∈ (V × V))
3834, 36, 37sylancr 695 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ⟨𝐵, 𝐷⟩ ∈ (V × V))
39 opex 4932 . . . . . . . . . 10 𝐵, 𝐷⟩ ∈ V
4039relsn 5223 . . . . . . . . 9 (Rel {⟨𝐵, 𝐷⟩} ↔ ⟨𝐵, 𝐷⟩ ∈ (V × V))
4138, 40sylibr 224 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → Rel {⟨𝐵, 𝐷⟩})
42 dmsnopss 5607 . . . . . . . . 9 dom {⟨𝐵, 𝐷⟩} ⊆ {𝐵}
43 ssv 3625 . . . . . . . . . . 11 {𝐴} ⊆ V
44 ssv 3625 . . . . . . . . . . 11 {𝐵} ⊆ V
45 ssconb 3743 . . . . . . . . . . 11 (({𝐴} ⊆ V ∧ {𝐵} ⊆ V) → ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴})))
4643, 44, 45mp2an 708 . . . . . . . . . 10 ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴}))
4722, 46sylib 208 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → {𝐵} ⊆ (V ∖ {𝐴}))
4842, 47syl5ss 3614 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → dom {⟨𝐵, 𝐷⟩} ⊆ (V ∖ {𝐴}))
49 relssres 5437 . . . . . . . 8 ((Rel {⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐵, 𝐷⟩} ⊆ (V ∖ {𝐴})) → ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐷⟩})
5041, 48, 49syl2anc 693 . . . . . . 7 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐷⟩})
5150uneq2d 3767 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴}))) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5233, 51syl5eq 2668 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5332, 52eqtrd 2656 . . . 4 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5453uneq1d 3766 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩}))
555, 29, 543eqtr4a 2682 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
56 ovex 6678 . . 3 (𝑆 sSet ⟨𝐴, 𝐶⟩) ∈ V
57 simprr 796 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐷𝑋)
58 setsval 15888 . . 3 (((𝑆 sSet ⟨𝐴, 𝐶⟩) ∈ V ∧ 𝐷𝑋) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
5956, 57, 58sylancr 695 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
60 ovex 6678 . . 3 (𝑆 sSet ⟨𝐵, 𝐷⟩) ∈ V
61 simprl 794 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐶𝑊)
62 setsval 15888 . . 3 (((𝑆 sSet ⟨𝐵, 𝐷⟩) ∈ V ∧ 𝐶𝑊) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
6360, 61, 62sylancr 695 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
6455, 59, 633eqtr4d 2666 1 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   × cxp 5112  dom cdm 5114  cres 5116  Rel wrel 5119  (class class class)co 6650   sSet csts 15855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sets 15864
This theorem is referenced by:  rescabs  16493  mgpress  18500
  Copyright terms: Public domain W3C validator