Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resabs1i Structured version   Visualization version   GIF version

Theorem resabs1i 39336
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
resabs1i.1 𝐵𝐶
Assertion
Ref Expression
resabs1i ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem resabs1i
StepHypRef Expression
1 resabs1i.1 . 2 𝐵𝐶
2 resabs1 5427 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wss 3574  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  liminfresre  40011
  Copyright terms: Public domain W3C validator