| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reueqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.) |
| Ref | Expression |
|---|---|
| raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reueqd | ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueq1 3140 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | |
| 2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | reubidv 3126 | . 2 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
| 4 | 1, 3 | bitrd 268 | 1 ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∃!wreu 2914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-cleq 2615 df-clel 2618 df-nfc 2753 df-reu 2919 |
| This theorem is referenced by: aceq1 8940 |
| Copyright terms: Public domain | W3C validator |