MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3140
Description: Equality theorem for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 nfcv 2764 . 2 𝑥𝐴
2 nfcv 2764 . 2 𝑥𝐵
31, 2reueq1f 3136 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  ∃!wreu 2914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-cleq 2615  df-clel 2618  df-nfc 2753  df-reu 2919
This theorem is referenced by:  reueqd  3148  lubfval  16978  glbfval  16991  uspgredg2vlem  26115  uspgredg2v  26116  isfrgr  27122  frgr1v  27135  nfrgr2v  27136  frgr3v  27139  1vwmgr  27140  3vfriswmgr  27142  isplig  27328  hdmap14lem4a  37163  hdmap14lem15  37174
  Copyright terms: Public domain W3C validator