| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv3i | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| Ref | Expression |
|---|---|
| reusv3.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
| reusv3.2 | ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| reusv3i | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 2 | reusv3.2 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → 𝐶 = 𝐷) | |
| 3 | 2 | eqeq2d 2632 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑥 = 𝐷)) |
| 4 | 1, 3 | imbi12d 334 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝐶) ↔ (𝜓 → 𝑥 = 𝐷))) |
| 5 | 4 | cbvralv 3171 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ↔ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) |
| 6 | 5 | biimpi 206 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) |
| 7 | raaanv 4083 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) ↔ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷))) | |
| 8 | prth 595 | . . . . . 6 ⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → (𝑥 = 𝐶 ∧ 𝑥 = 𝐷))) | |
| 9 | eqtr2 2642 | . . . . . 6 ⊢ ((𝑥 = 𝐶 ∧ 𝑥 = 𝐷) → 𝐶 = 𝐷) | |
| 10 | 8, 9 | syl6 35 | . . . . 5 ⊢ (((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| 11 | 10 | 2ralimi 2953 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 → 𝑥 = 𝐶) ∧ (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| 12 | 7, 11 | sylbir 225 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) ∧ ∀𝑧 ∈ 𝐵 (𝜓 → 𝑥 = 𝐷)) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| 13 | 6, 12 | mpdan 702 | . 2 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| 14 | 13 | rexlimivw 3029 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → 𝑥 = 𝐶) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∀wral 2912 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: reusv3 4876 |
| Copyright terms: Public domain | W3C validator |