| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv3i | Structured version Visualization version Unicode version | ||
| Description: Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.) |
| Ref | Expression |
|---|---|
| reusv3.1 |
|
| reusv3.2 |
|
| Ref | Expression |
|---|---|
| reusv3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reusv3.1 |
. . . . . 6
| |
| 2 | reusv3.2 |
. . . . . . 7
| |
| 3 | 2 | eqeq2d 2632 |
. . . . . 6
|
| 4 | 1, 3 | imbi12d 334 |
. . . . 5
|
| 5 | 4 | cbvralv 3171 |
. . . 4
|
| 6 | 5 | biimpi 206 |
. . 3
|
| 7 | raaanv 4083 |
. . . 4
| |
| 8 | prth 595 |
. . . . . 6
| |
| 9 | eqtr2 2642 |
. . . . . 6
| |
| 10 | 8, 9 | syl6 35 |
. . . . 5
|
| 11 | 10 | 2ralimi 2953 |
. . . 4
|
| 12 | 7, 11 | sylbir 225 |
. . 3
|
| 13 | 6, 12 | mpdan 702 |
. 2
|
| 14 | 13 | rexlimivw 3029 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: reusv3 4876 |
| Copyright terms: Public domain | W3C validator |